Due to the fact that LMS algorithm highly dependents on the autocorrelation matrix, the algorithm has low adaptive ratio. 但LMS算法对输入信号的自相关矩阵具有很强的依赖性,因而自适应率不高。
Analyzing on the Calculation of the Eigenvalue Expressions of the Autocorrelation Matrix in LMS Algorithm LMS算法自相关矩阵特征值表达式的计算分析
We analyses the different result of PCA by using autocorrelation matrix and covariance matrix, and point out that the express of PCA is different but the error are the same. 分析了用协方差矩阵和自相关矩阵得出的PCA表达是不同的,但是两者的误差是相同的。
After extracting the eigenvalues of the autocorrelation spectrum matrix, normal and mutation erythrocyte are classified successful. 通过PCA对一维自相关光谱矩阵的特征提取,从而实现了血红细胞中正常细胞和变异细胞分类。
A new method based on column vector average of the autocorrelation matrix without eigendecomposition is presented to estimate the channel vector. 本文提出一种基于相关矩阵列矢量平均的信道估计算法,该算法不需要特征分解或跟踪。
This paper introduces a typical SNR estimation algorithm by the use of autocorrelation matrix singular value decomposition method. 主要介绍了一种典型的信噪比估计算法,并对信噪比的自相关矩阵奇异值分解估计法进行了研究。
The transformed matrices of learning subspaces are proved to converge to the estimation of pattern autocorrelation matrix, thus the convergence of Kohonen's self-supervised LSMs is proved. 证明了一类Kohonen自监督学习子空间方法的收敛性;
The recursive algorithm of Householder transform is applied for AR spectral estimation by forming the high-order autocorrelation matrix, and an unbiased estimation of AR parameters is obtained. Thus, the noise pollution to AR spectral is overcome and a better estimation performance is ensured. 本文通过构造高阶相关阵,用householder变换递推算法做AR谱估计,得到了AR参数的无偏估计,从而剔除了噪声对AR谱的污染,保证了较好的估计质量。
In order to yield high resolution, the high-order autocorrelation matrix is used, the number of the operations for the estimation of frequency and power is tremendous. 为了达到高分辨率而采用高阶相关矩阵,谱估计的运算量十分大。
Analysis and Simulation of LMS Newton Algorithm Using Improved Estimate of Autocorrelation Matrix 改进相关矩阵估计的LMS牛顿算法分析与仿真
The outstanding advantage of this algorithm is that it avoids the complex computation for inverse of the autocorrelation matrix. 这种算法的最大优点在于,避免求解运算复杂程度高的自相关矩阵的逆矩阵;
On output autocorrelation matrix of array antenna and its error 阵列天线输出自相关矩阵及其误差分析
A method extracting multiple target feature by the eigenvalues decomposition of target echo autocorrelation matrix is presented. 提出了基于目标回波自相关矩阵本征值分解提取多目标特征的新方法。
The main contributions of this thesis are as follows: 1. A new mean-shifting Incremental PCA method is proposed based on the autocorrelation matrix. 按照所描述的潜在低维结构复杂程度递增的顺序,本文的主要贡献如下:1.提出了一种新的基于自相关矩阵的均值更新增量主元分析算法。
Currently, detection methods include traversal research, image block autocorrelation matrix and image block matching. 目前的检测方法主要包括:遍历搜寻法、图像块自相关矩阵法和图像块匹配法。
In subspace method, autocorrelation matrix of received vectors is calculated first, then the estimation of channel parameters is obtained using the orthogonality between signal subspace and noise subspace. 该方法首先计算接收符号向量的自相关矩阵,再利用信号子空间与噪声子空间的正交性粗略得到信道参数的估计。
The updated eigen-subspace is re-centered without recompute the autocorrelation matrix of the old data. 更新的特征子空间进行重新居中,而无需重新计算旧数据的自相关矩阵。
Moreover, the storage requirement of the old information and the dimension of the autocorrelation matrix remain constant instead of increasing with the number of total input data. 旧信息所需的存储空间和自相关矩阵的维数保持恒定,而不是随着输入数据的总数增加。
For this reason, we propose a sample weighted orthogonal subspace projection algorithm, by defining the weighted autocorrelation matrix to estimation background, and then use the orthogonal subspace projection method to detect the targets. 为此,提出了一种加权正交子空间投影算法,通过自定义的加权自相关矩阵估计背景,然后用正交子空间投影法来进行目标探测。
Blind identification can be performed satisfactorily also in the presence of NBI, requiring only an approximate rank determination of the NBI autocorrelation matrix. 当存在窄带干扰时,只需要一个NBI自相关矩阵的近似矩阵,该算法就能达到令人满意的效果。
In order to solve the autocorrelation coefficient matrix of rough surfaces, uses the Newton iteration method and the Nonlinear conjugate gradient method to solve the Nonlinear equations which is of low efficiency and poor convergence. 采用改进的非线性共轭梯度法以及割线法精确线搜索求解非线性方程组,克服牛顿迭代法对自相关系数矩阵的求解收敛性差以及计算效率低下。
The research, based on MA model, uses the method of solving the autocorrelation coefficient matrix and Johnson translator system to simulate rough surfaces. 研究基于MA模型,利用求解自相关系数矩阵的方法以及Johnson转换系统模拟粗糙表面。